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Energy transfer in Rayleigh-Taylor instability

Andrew W. Cook and Ye Zhou
Lawrence Livermore National Laboratory, University of California, Livermore, California 94551

~Received 1 November 2001; revised manuscript received 8 February 2002; published 30 August 2002!

The spatial structure and energy budget for Rayleigh-Taylor instability are examined using results from a
512351232040 point direct numerical simulation. The outer-scale Reynolds number of the flow follows a
rough t3 power law and reaches a final value of about 5500. Taylor microscales and Reynolds numbers are
plotted to characterize anisotropy in the flow and document progress towards the mixing transition. A mixing
parameter is defined which characterizes the relative rates of entrainment and mixing in the flow. The spectrum
of each term in the kinetic energy equation is plotted, at regular time intervals, as a function of the inhomo-
geneous direction and the two-dimensional wave number for the homogeneous directions. The energy spectrum
manifests the beginning of an inertial range by the latter stages of the simulation. The production and dissi-
pation spectra become increasingly opposite and separate in wave space as the flow evolves. The transfer
spectrum depends strongly on the inhomogeneous direction, with the net transfer being from large to small
scales. Energy transfer at the bubble/spike fronts is strictly positive. Extensive cancellation occurs between the
pressure and advection terms. The dilatation term produces negligible energy transfer, but its overall effect is
to move energy from high to low density regions.

DOI: 10.1103/PhysRevE.66.026312 PACS number~s!: 47.27.Ak, 47.27.Cn
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I. INTRODUCTION

Rayleigh-Taylor instability~RTI! occurs at the interface
between two fluids of different densities whenever t
heavier fluid is decelerated by the lighter fluid@1–4#; i.e., if
density and pressure gradients are in opposite directi
then vorticity, deposited at the interface through barocli
torque, will cause the fluids to interpenetrate and m
Richtmyer-Meshkov instability~RMI! corresponds to the
case of impulsive acceleration of an interface@5,6#, e.g.,
shock passage, and is sometimes considered a special c
RTI ~with time-dependent acceleration!. RTI presents a seri
ous design challenge for inertial confinement fusion~ICF!
capsules, where high density shells are decelerated by
density fuel. Depending on the acceleration history and
ratio of shell radius to thickness, RTI may lead to break up
the shell prior to ignition and/or significant mixing of th
fuel with the plastic ablator@7#. RTI also plays a prominen
role in supernovae, where ejecta are decelerated by circ
stellar matter@8,9#. Furthermore, mixing from RTI alters
thermonuclear burn in supernovae in such a manner a
affect the rates of formation of heavy elements; hence,
relative abundance of elements in the universe, and the
responding potential for life, are directly related to ast
physical RTI mixing.

Most RTI research thus far has focused on predicting
rate of growth of the turbulent mixing zone@10–15#. Mixing
zone amplitudes are routinely measured in high-energy l
experiments conducted at very high Reynolds number@16#.
In its early stages, RTI growth is characterized by ‘‘spike
of heavy fluid penetrating into light material and ‘‘bubble
of light fluid rising into heavy material. In the strongly non
linear stages, the bubbles and spikes merge to form la
structures. If the only imposed length scale is from a cons
acceleration, then the mixing layer will grow quadratically
time; e.g., a growth constant ‘‘a’’ can be defined and mea
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sured@17,18,10–13#. However, if long wavelength perturba
tions ~compared to domain size! are present, the scalin
analysis is more complicated and growth may not be q
dratic @19#.

The range of scales participating in RTI dynamics co
tinually grows as the flow evolves. Kelvin-Helmholtz inst
bilities, occurring along the sides of the interpenetrating fi
gers, along with vortex stretching and bending motio
serve to broaden the energy spectrum. Eventually the fl
may become fully turbulent, while still remaining highly an
isotropic. A complete description of the flow field require
resolution down to the Kolmogorov scale@20,21#. Due to
limitations of diagnostics, laser experiments performed th
far have not yielded much information on the internal stru
ture of the mixing region. Larger-scale experiments@22–24#
have provided some information on mixing zone structu
but lack the resolution necessary for a close investigation
the energy budget.

Over the past three decades, direct numerical simula
~DNS! has emerged as an accepted surrogate for experim
when detailed information, not readily measured in the la
ratory, is needed. DNS is restricted to low Reynolds num
flows, due to the limited range of wave numbers that can
supported on a computational mesh. Nevertheless, it
proven capable of following the three phases of turbul
mixing identified by Eckart@25#, i.e., entrainment, stirring
and molecular mixing. It also provides a complete, thre
dimensional, time-dependent description of the flow fie
DNS data of RTI flow can be used to test and/or tune mod
for the overall growth of the mixing region, and for deve
oping subgrid-scale~SGS! models for large eddy simulation
The latter is intimately connected with energy transfer to a
from unresolved scales. The primary goal of this paper is
gain insight into the energy transfer processes in orde
guide future SGS model development.

The outline of this paper is as follows. In Sec. II, th
©2002 The American Physical Society12-1
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ANDREW W. COOK AND YE ZHOU PHYSICAL REVIEW E66, 026312 ~2002!
governing equations and solution technique of the DNS
described. In Sec. III, flow visualizations are present
along with statistical measures of flow structure, such
growth rates and Reynolds numbers. In Sec. IV, a varia
density formulation is proposed for energy transfer analy
previously performed for isotropic@26–31#, anisotropic@32#,
and wall-bounded@33# flows. The analysis is carried out i
Sec. V, where the spectrum of each term in the kinetic ene
equation is computed from the DNS data. Finally, conc
sions are given in Sec. VI.

II. DIRECT NUMERICAL SIMULATION

A. Governing equations

The conservation laws governing the flow of two incom
pressible fluids in a gravitational field with no surface te
sion are

]rYl

]t
1

]rujYl

]xj
5

]

]xj
S rD

]Yl

]xj
D ~ l 51,2!, ~1!

]rui

]t
1

]ruiuj

]xj
52

]p

]xi
1

]t i j

]xj
1rgi , ~2!

where

t i j 52mS Si j 2
1

3
d i j

]uk

]xk
D ,

Si j 5
1

2 S ]ui

]xj
1

]uj

]xi
D .

Here r is the mixture density,Yl is the mass fraction o
speciesl, ui is the mass-averaged mixture velocity,p is the
pressure,D is the Fickian diffusivity,m is the dynamic vis-
cosity, andgi5(0,0,2g) is the acceleration. The mass fra
tions satisfy

Y1~x,t !1Y2~x,t !51 ~3!

and, definingr1 and r2 to be the constant densities of th
light and heavy fluids, respectively, the specific volume s
isfies

1

r~x,t !
5

Y1~x,t !

r1
1

Y2~x,t !

r2
. ~4!

Equations~1!, ~3!, and~4! can be used to derive the follow
ing divergence relation for miscible fluids@34#:

]uj

]xj
52

]

]xj
S D

r

]r

]xj
D . ~5!
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Hence, for incompressible mixing, a convenient equation
r is

]r

]t
1uj

]r

]xj
5r

]

]xj
S D

r

]r

]xj
D . ~6!

B. Solution technique

The equations were solved in nondimensional form, w
length measured in units of box widthL, time measured in
units of AL/g, and density measured in units ofr1 . The
diffusivity was set toD5m/r1 , with the viscosity beingm
551224/3 ~in the units just described!. The numerical
scheme for solving the governing equations is described
detail in @19#. In summary, the code computesx and y de-
rivatives spectrally via fast Fourier transform. Thez deriva-
tives are computed with an eighth-order compact sche
@35#. Periodic boundary conditions are applied inx and y,
with no-slip walls imposed inz. Thez grid spacing is set to
8
13 times the grid spacing inx andy, in order to account for
the difference in resolving power between the spectral
compact methods. Time advancement is accomplished v
pressure-projection algorithm with third-order, Adam
Bashforth-Moulton integration.

The simulation was performed on a computational me
with 512351232040 grid points inx, y, and z directions,
respectively. The bottom~17

32! of the domain was initialized
with r5r151 and the top~15

32! portion with r5r253. The
density interface between the fluids was specified in the s
manner as in@19#, i.e., as an error function inz ~five grid
points thick! with isotropic perturbations inx and y. The
perturbed interface was initially located at thez50 plane.
Diffusion velocities were initialized as in@19# in order to
satisfy the divergence relation~5!.

The spectral/compact algorithm was chosen to ensure
numerical dissipation did not enter into the calculation. N
filtering or artificial diffusion of any kind was applied in th
simulation, i.e., the viscous and diffusive terms in Eqs.~2!

FIG. 1. ~Color! Initial density perturbations onz50 plane.
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FIG. 2. ~Color! Snapshots of density field from DNS of Rayleigh-Taylor instability. Images, proceeding from upper left to lower
were taken att51, 2, 3, 4, 5, and 6. The heavy fluid is red (r53), the light fluid is blue (r51), and the mixed fluid is green (r52).
n

v
data
here
and ~6! were solely responsible for energy dissipation. Co
sequently, the simulation eventually became unstable~for
Re.5500! once significant energy reached the Nyquist wa
number. A prominent symptom of under-resolution~and con-
02631
-

e

sequent aliasing errors! beyond Re55500 is a curling up of
the energy spectrum at the highest wave numbers. The
presented herein were selected at times prior to those w
significant aliasing errors occurred.
2-3
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FIG. 3. ~Color! Kinetic energy ~k! on side
boundary planes of DNS domain. Images we
taken at t53, ~upper left!, 4 ~upper right!, 5
~lower left!, and 6~lower right!.
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III. FLOW STRUCTURE

A. Visualization

The initial perturbations are depicted in Fig. 1, which pr
vides a top-down view of density on thez50 plane att
50. The flow was seeded with fine scale perturbations
minimize the influence of the periodic boundary condition
Figure 2 displays a time sequence of the density field. T
images, taken at unit time intervals, illustrate the evolution
the fluid interface~defined as ther52 isosurface!. The early
evolution is weakly nonlinear and is characterized by
formation of bubbles of light fluid rising upwards and spik
of heavy fluid penetrating downward. Later on, the bubb
and spikes begin to merge and the flow becomes stro
nonlinear.
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The kinetic energy,k[ruiui /2, on the back, bottom, and
side planes of the flow domain is shown in Fig. 3 fort53, 4,
5, and 6. It grows rapidly and appears to be fairly eve
distributed across the mixing layer. The gravitational pote
tial provides the source for kinetic energy production. Figu
4 displays the kinetic energy on thez50 plane at the same
times. Like the density field, the kinetic energy is homog
neous and isotropic inx andy. Also, large values ofk appear
to become concentrated in localized regions of the flow.

The source of vorticity~and consequently energy gener
tion! is the baroclinic torque term in the vorticity equatio
which is nonzero only in the mixing region. The magnitu
of vorticity, i“3ui , and the magnitude of baroclinic torqu
i“r3“pi /r, at t56, are plotted in Fig. 5. A few spikelike
and bubblelike structures are discernible in the fields; ho
2-4
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FIG. 4. ~Color! Kinetic energy~k! on z50 plane att53, ~upper left!, 4 ~upper right!, 5 ~lower left!, and 6~lower right!.
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ever, the fields are quite chaotic. Early on, when the bubb
and spikes are growing more or less independently,
hence are readily identified, vorticity~and consequently en
ergy! is primarily generated along the sides of the structur
However, by late time, the flow has become weakly turbul
and vorticity generation occurs throughout the mixing zo
The complexity of the baroclinic torque field increases
centrifugal forces pull pressure gradients out of alignm
with the gravity vector.

B. Statistics

The penetration lengths of the bubbles and spikes,hb(t)
andhs(t), respectively, are defined as in@19#, i.e., by aver-
aging the heavy fluid mole fraction@X5(r2r1)/(r22r1)#
in x andy, and measuring the distance fromz50 for which
^X&xy<0.99 and̂ X&xy>0.01 ~^&xy denoting horizontal aver
age!. The bubble and spike penetrations are plotted in Fig
The change in slope aroundt52 occurs as modal growth
overtakes diffusive growth.
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6.

The outer-scale Reynolds number is plotted, versus ti
in Fig. 7. The Reynolds number is based on the verti
extent of the mixing region,h5hb2hs , and its rate of
growth, ḣ, i.e.,

Re5
~r11r2!ḣh

2m
. ~7!

The Reynolds number grows roughly liket3, which is ex-
pected ifh;t2 and ḣ;t. ~Reasons whyh may depart from
quadratic growth are discussed in@19#.! The terminal outer-
scale Reynolds number of 5500 is about a third of the R
nolds number@(1 – 2)3104] suggested by Dimotakis@36# as
the critical value for reaching the mixing transition an
achieving fully developed turbulence. It should be note
however, that the Reynolds number for mixing transition h
yet to be documented for RTI flow. If data above the mixi
transition could be obtained for RTI flow, it would be inte
2-5
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FIG. 5. ~Color! Magnitude of vorticity~left! and magnitude of baroclinic torque~right! at t56.
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esting to see if the ‘‘hot spots’’ in kinetic energy would pe
sist or if the energy would become more evenly distribut

It is possible to define Taylor microscales and Reyno
numbers for this flow in a manner that accommodates
anisotropic forcing. A microscale in thei direction can be
defined as@37,38#

l i5F ^ui
2&xy

^~]ui /]xi !
2&xy

G1/2

~no sum on i !, ~8!

with statistics computed in the (z50) plane. With statistical

FIG. 6. Amplitude of bubbles (hb) and spikes (hs) in the mixing
region. The total width of the layer ish5hb2hs .
02631
.
s
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isotropy in the (z50) plane, thex andy microscales are very
close and can be averaged to define a single horizontal
croscale,

lxy5
lx1ly

2
. ~9!

Figure 8 depicts the temporal growth of the vertical a
horizontal Taylor microscales in the (z50) plane. The ver-
tical and horizontal scales both grow as the bubbles incre
in size, broadening the velocity correlation functions. T
difference between the vertical and horizontal scales give

FIG. 7. Outer-scale Reynolds number, based on extent and
of growth of mixing region.
2-6
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ENERGY TRANSFER IN RAYLEIGH-TAYLOR INSTABILITY PHYSICAL REVIEW E66, 026312 ~2002!
direct measure of anisotropy in the flow. The ratiolz /lxy
starts out near unity, increases during the diffusive grow
stage to a maximum value of about 3.7, and then appea
asymptote to a value around 1.4 in the far nonlinear regi

Figure 9 depicts the temporal evolution of the horizon
and vertical Taylor Reynolds numbers on the (z50) plane.
These are defined as

Rel,i5
^r&xyl i@^ui

2&xy#
1/2

m
~no sum on i !, ~10!

again, with spatial averages computed in the (z50) plane.
As with the microscales, horizontal isotropy permits a ho
zontal Taylor Reynolds number to be defined as the ave
of Rel,x and Rel,y , i.e.,

Rel,xy5
Rel,x1Rel,y

2
. ~11!

FIG. 8. Vertical ~labeledz! and horizontal~labeledxy! Taylor
microscales on thez50 plane.

FIG. 9. Vertical~z label! and horizontal~xy label! Taylor Rey-
nolds numbers on thez50 plane.
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The anisotropy in microscales~Fig. 8! is also manifest in the
Taylor Reynolds numbers. A Taylor Reynolds number
roughly 100 is required to cross the mixing transition@36#.
Judging from the proximity of the outer-scale Reynolds nu
ber to the critical value of 10 000–20 000, it appears that
transition criterion would probably apply best to the horizo
tal Taylor Reynolds number, rather than the vertical.

In order to quantify the degree of mixing within the laye
a parameter, analogous to the Youngs@13# ‘‘molecular mix-
ing fraction,’’ ~Q! is defined. Assuming a passive, equili
rium chemical reaction between fluids, the chemical prod
is

Xp5H X/Xs if X<Xs

~12X!/~12Xs! if X.Xs
, ~12!

FIG. 10. Mixing parameter, indicating the ratio of actual chem
cal product~for a hypothetical infinite-rate reaction! to the product
that would be formed if the fluid inside the mixing region we
completely mixed~no xy variation!.

FIG. 11. Evolution of two-dimensional energy spectrum~E! at
z50.
2-7
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ANDREW W. COOK AND YE ZHOU PHYSICAL REVIEW E66, 026312 ~2002!
where Xs is the ~heavy-fluid! mole fraction for a stoichio-
metric mixture, here taken asX5 1

2 . A mixing parameter,J,
is defined as the ratio of mixed to entrained fluid, i.e.,

J5

E
H

^Xp~X!&xydz

E
H

Xp~^X&xy!dz

, ~13!

whereH is the height of the flow domain. Thus,J51 indi-
cates fluids are completely mixed within the mixing zon
whereas,J50 corresponds to fully segregated fluids~im-
miscible case!. Note that with no perturbations (X5^X&xy),
for an increasingly sharp interface, the numerator and
nominator go to zero at the same rate; hence,J51 for a
Heaviside function. The mixing parameterJ is plotted in
Fig. 10 as a function of time. Initially, the layer is diffus
with small amplitude perturbations; hence,J starts out near
unity. As the perturbations grow, they entrain fluid at a r
proportional to their wavelengths~longer wavelengths resu
in bigger ‘‘gulps’’ of pure fluid!. At early times, the rate o
entrainment exceeds the rate of mixing andJ decreases
This is a consequence of the fact that, early on, the sur
area across which the fluids can diffuse is relatively sm
However, later on the interface begins to wrinkle due
baroclinic vorticity ~mushroom caps! and Kelvin-Helmholtz
instabilities in the shearing regions along the mushro
necks; the interfacial surface area then rapidly increases
mixing rate overtakes the entrainment rate, and the cu
reverses direction. The curve appears to asymptote to a v
somewhere around 0.8; however, mixing and entrainm
rates have not come into balance within the time span of
simulation. Furthermore, this curve is likely to rise after t
mixing transition occurs.

IV. ENERGY BUDGET

In order to extend the methodology of constant-dens
energetics to the variable-density case, a new variable is
troduced, i.e.,

v i[r1/2ui , ~14!

such that, the kinetic energy may be written ask5v iv i /2.
This variable has been used for similar purposes by var
authors @39–41#. The left-hand side of the Navier-Stoke
equation can then be written as

]rui

]t
1

]ruiuj

]xj
5r1/2

]v i

]t
1

1

2
r21/2v i

]r

]t

1r1/2
]v iuj

]xj
1

1

2
r21/2v iuj

]r

]xj

5r1/2S ]v i

]t
1

]v iuj

]xj
2

1

2
v i

]uk

]xk
D ,

such that the transport equation forv i becomes
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]v i

]t
5r1/2gi2

]v iuj

]xj
2r21/2

]p

]xi
1

1

2
v i

]uk

]xk

12r21/2
]

]xj
FmS Si j 2

1

3
d i j

]uk

]xk
D G . ~15!

For simplicity, Eq.~15! is rewritten as

]v i

]t
5Fi1Ni1Di , ~16!

where the buoyant forcing is

Fi5r1/2gi , ~17!

the nonlinear~quadratic, pressure, and dilatation! contribu-
tion is

Ni52
]v iuj

]xj
2r21/2

]p

]xi
1

1

2
v i

]uk

]xk
, ~18!

and the viscous diffusion is

Di52r21/2
]

]xj
FmS Si j 2

1

3
d i j

]uk

]xk
D G . ~19!

FIG. 12. ~Color! Energy spectrum~E! versusz ~vertical! and
log10(k) ~horizontal! at t53 ~top left!, 4 ~top right!, 5 ~lower left!,
and 6~lower right!. Blue50 and red5531024.
2-8
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ENERGY TRANSFER IN RAYLEIGH-TAYLOR INSTABILITY PHYSICAL REVIEW E66, 026312 ~2002!
Now let v̂ i , F̂ i , N̂i , andD̂ i be horizontal Fourier transform
of v i , Fi , Ni , and Di , respectively; e.g.,v̂ i(k,z,t)
5Fxy$v i(x,t)%, where k5(kx ,ky) is the horizontal wave
vector. If v̂ i* (k,z,t) denotes the complex conjugate
v̂ i(k,z,t), then multiplying the transform of Eq.~16!, and its
conjugate, byv̂ i* and v̂ i , respectively, and adding the equ
tions together yields

] v̂ i* v̂ i

]t
5 v̂ i* F̂ i1 v̂ i F̂ i* 1 v̂ i* N̂i1 v̂ i N̂i* 1 v̂ i* D̂ i1 v̂ i D̂ i* .

~20!

Integrating Eq. ~20! over Fourier annuli of radiusk
5Akx

21ky
2 leads to the energy budget equation

]

]t
E~k,z,t !5P~k,z,t !1T ~k,z,t !1E~k,z,t !, ~21!

where the kinetic energy is

E5
1

2 R ~ v̂ i* v̂ i !ds, ~22!

the production from gravity is

FIG. 13. ~Color! Production~P: left!, transfer~T: middle!, and
dissipation~E: right! spectra versusz ~vertical! and log10(k) ~hori-
zontal! at t53 ~top! and 4~bottom!. Blue52231024, green50,
and red5231024.
02631
P5
1

2 R ~ v̂ i* F̂ i1 v̂ i F̂ i* !ds, ~23!

the nonlinear transfer is

T5
1

2 R ~ v̂ i* N̂i1 v̂ i N̂i* !ds, ~24!

and the viscous dissipation is

E5
1

2 R ~ v̂ i* D̂ i1 v̂ i D̂ i* !ds, ~25!

with ds being a differential element of a wave space ann
lus.

There are three contributions to the nonlinear ene
transfer. The first is from the quadratic term, which is resp
sible for passive-vector advection, while the second and th
contributions are from pressure and dilatation effects. In
der to ascertain the relative importance of each process
total nonlinear transfer is subdivided into each individu
component, i.e.,

T ~k,z,t !5Tq~k,z,t !1Tp~k,z,t !1Td~k,z,t !, ~26!

where

FIG. 14. ~Color! Production~P: left!, transfer~T: middle!, and
dissipation~E: right! spectra versusz ~vertical! and log10(k) ~hori-
zontal! at t55 ~top! and 6~bottom!. Blue52231024, green50,
and red5231024.
2-9
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ANDREW W. COOK AND YE ZHOU PHYSICAL REVIEW E66, 026312 ~2002!
Tm5
1

2 R ~ v̂ i* N̂m,i1 v̂ i N̂m,i* !ds ~m5q,p,d! ~27!

and

Nq,i52
]v iuj

]xj
, ~28!

Np,i52r21/2
]p

]xi
, ~29!

Nd,i5
1

2
v i

]uk

]xk
. ~30!

V. SPECTRA

The time evolution of the two-dimensional energy spe
trum, E(k,z50,t50,2,4,6), is plotted in Fig. 11. The initia
diffusion velocities result in a nonzero spectrum att50. The
spectrum increases by several orders of magnitude as ki
energy is deposited into the flow. The peak of the spectr
migrates toward lower wave numbers as bubbles and sp
merge to form larger structures. The spectrum also fills ou
higher wave numbers as vortex stretching and bending
tions transfer energy to smaller scales. Near the end of
simulation it appears that an inertial range is just beginn

FIG. 15. ~Color! Quadratic (Tq: left! and pressure (Tp: right!
contributions to transfer spectrum versusz ~vertical! and log10(k)
~horizontal! at t53 ~top! and 4 ~bottom!. Blue52531024,
green50, and red5531024.
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to form. In @42#, Zhou argues that the inertial range for th
RTI flow will follow a 27

4 power law. He reasons that th
spectrum will be modified from the classical Kolmogoro
~25

3! power law for isotropic turbulence as a result of t
external time scale introduced by gravity. Both power la
are shown on the figure for comparison to the data. T
late-time spectra appear somewhat consistent with Zh
theory; however, the statistical fluctuations in the spec
~there are not many points in the Fourier annuli at low
wavenumbers! are larger than the difference in slope b
tweenk27/4 andk25/3. Furthermore, there is no clear begi
ning to the dissipation range, which appears to extend w
into the lower wave numbers, thereby steepening the slop
the spectrum. Due to the closeness of the power laws, m
higher Reynolds number data and improved statistics will
needed in order to discriminate between the two.

The z dependence of the energy spectrum is graphic
portrayed in Fig. 12 at four different times. The plots are in
semi-Fourier domain with log10(k) along the abscissa andz
along the ordinate. The bulk of the energy is initially depo
ited at a moderate wave number, corresponding to the do
nant wavelength of the density perturbations. As tim
progresses,E(k,z,t) expands in bothk and z but maintains
its maximum value close toz50. The spectrum decrease
near the edges of the mixing zone, becoming negligible o
side it.

The production~P!, transfer~T !, and dissipation~E! spec-

FIG. 16. ~Color! Quadratic (Tq: left! and pressure (Tp: right!
contributions to transfer spectrum versusz ~vertical! and log10(k)
~horizontal! at t55 ~top!, and 6 ~bottom!. Blue52531024,
green50, and red5531024.
2-10
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tra are plotted in Figs. 13 and 14 on the samez versus
log10(k) domain for the same times. Early on, the peaks
the production and dissipation spectra are close to one
other, but later the production moves toward lower wa
numbers while the peak of the dissipation spectrum st
roughly fixed. By the end of the simulation, there is somk
separation between the two, i.e., as structures merge w
the mixing layer, energy is deposited at larger scales.
increasing separation of peaks between the production
dissipation spectra is a direct result of the increasing R
nolds number for this transitional flow. As time progress
both spectra advance inz andk, becoming increasingly large
and opposite.

In contrast to the straightforward nature ofP andE, the
transfer spectrum behaves in a very complicated manne
exhibits an intricate web of positive and negative regio
interspersed over a wide range inz and k. At higher wave
numbersT is mostly positive, indicating a net cascade
energy to smaller scales. It is also positive at the top
bottom of the mixing zone, suggesting production of ene
at the bubble and spike fronts. Inside the mixing zone, ba
scatter appears approximately equal to forwardscatter. It
ther appears that, at each instant in time, somez locations
may be undergoing forward energy cascade, while neigh
ing regions are simultaneously experiencing inverse casc

In order to unravel the irregular patchwork that constitu
T, each individual component~Tq , Tp , and Td! is plotted
separately. In Figs. 15 and 16,Tq andTp are plotted on the
same semi-Fourier domain and at the same times as be
The dilatation spectrum,Td , is plotted~at all four times! in
Fig. 17. The dilatation spectrum is roughly two orders
magnitude smaller thanTq andTp , and hence, makes negl
gible contribution toT. Interestingly, the quadratic (Tq) and
pressure (Tp) components are near opposites of one anot
their net contribution toT being the result of extensive can
cellation between the two. The quadratic term is mos
negative at lower wave numbers inside the mixing zone
mostly positive at higher wave numbers and near the ed
of the mixing envelope. Regarding the pressure term, ne
the opposite is true, except at higher wave numbers wh
positive and negative regions appear to be roughly equ
distributed. The net positive transfer of energy to the hig
wave numbers~usual cascade picture! and to the bubble/
spike fronts is thus a result of quadratic interactions; w
pressure counterbalancing advection, for the most part.

As regards the dilatation,Td , although its influence on the
energetics is likely negligible, it is interesting to observe th
it is strongly polarized, i.e., positive forz,0 ~spike region!
and negative forz.0 ~bubble region!. The velocity diver-
gence is related to diffusion through Eq.~5!. The net effect of
diffusion is to increase the density of fluid in the lower r
gion and decrease the density of fluid in the upper reg
This results in a net transfer of energy in the2z direction
due to diffusion of heavy fluid into light fluid. At late times
vigorous stirring at the center of the mixing zone causes
positive and negative regions ofTd to overlap.

VI. CONCLUSIONS

We have examined the flow structure and energy bud
for Rayleigh-Taylor instability using the results of a hig
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resolution direct numerical simulation. The outer-scale R
nolds number was observed to follow at3 power law and
reached a final value of 5500, the highest Reynolds num
attained in a DNS or RTI flow to date. The curvature
velocity correlation functions, as manifest in the Taylor m
croscales, exhibits strong anisotropy between the vertical
horizontal directions, with a similar anisotropy observed
the Taylor Reynolds numbers. This is due to the direc
forcing term in the governing equations. The energy sp
trum, computed at the center of the mixing zone, appear
manifest the beginning of an inertial range by the lat
stages of the simulation. Unfortunately, statistical fluctu
tions in the spectrum make it difficult to establish wheth
the inertial range follows a25

3 Kolmogorov power law or
the 27

4 power law proposed by Zhou@42#.
A formulation of the kinetic energy equation was pr

posed, which enables straightforward extension of meth
ologies commonly employed for constant-density, isotro
turbulence. The spectrum of each term in the energy equa
was computed as a function of height, horizontal wave nu
ber, and time. The peak of the energy spectrum migrate
lower wave numbers as structures merge inside the mix
layer. The production spectrum also moves to lower wa
numbers as gravity acts on the larger structures. The diss
tion spectrum expands in bothz and k while its peak stays
roughly fixed in wave number space. The limited Reyno
number of the DNS appears to inhibit movement of the pe

FIG. 17. ~Color! Dilatation (Td) component of transfer spectrum
versusz ~vertical! and log10(k) ~horizontal! at t53 ~top left!, 4 ~top
right!, 5 ~lower left!, and 6~lower right!. Blue52731026, green
50, and red5731026.
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dissipation to higher wave numbers.
The transfer spectrum depends strongly on the inhomo

neous directionz. While the net energy transfer is from larg
to small scales, there is significant inverse cascade ov
wide range ofz. Energy transfer at the bubble/spike fronts
strictly positive. Examination of the individual contribution
to the transfer reveals this to be due to the quadratic~advec-
tion! term. Pressure acts to counterbalance advection,
that the net transfer is substantially smaller than the tran
from either single component. The dilatation term accou
for energy transfer via diffusion of unequal-density fluids.
is very small but serves to move energy from high to lo
density regions.

The flow induced by Rayleigh-Taylor instability, as se
here, has rather different character than that of homogene
isotropic turbulence. The flow is highly anisotropic, even
small scales, as evidenced by the Taylor microscales
Reynolds numbers. Initial rates of entrainment and mix
are determined by the initial conditions. Production rates
ways exceed dissipation rates; hence, the kinetic en
grows rapidly in time. Furthermore, the evolution of th
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spectra depends sensitively on initial conditions; since
interfacial perturbations set the scale at which energy is
tially injected into the flow. This has serious consequen
for large eddy simulations, where the initial perturbatio
may be much smaller than the grid scale. In such ca
subgrid-scale models must be capable of treating not o
backscatter, but also growth of spectra below the grid sc
and migration of the energy peak through the cutoff wa
number. The detailed analysis of the spectra, perform
herein, serves as a step toward developing subgrid-s
models capable of treating RTI flows in ICF and astrophys
applications.
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